Preliminary Study on eDNA of the Coelacanth's Habitat Around Deep Sea Conservation Areas of North Sulawesi, Indonesia

Kawilarang W.A. Masengi^{1,2}, I.F. Mandagi^{1,2}, H. Manengkey², P.N.I Kalangi², A. Luasunaung², F.P.T. Pangalila², F.D. Hukom³, M. Iwata⁴, Y. Abe⁴, Y. Sato⁵, R. Kimura⁶ and K. Yamahira¹ ¹Tropical Biosphere Research center, University of the Ryukyus
² Faculty of Fisheries and Marine Science, Sam Ratulangi University, Indonesia ³Research center for Oceanography, Indonesian Institute of Science,Indonesia ⁴Aquamarine Fukushima and Marine Sciences Museum, Iwaki, Japan ⁵Center for Strategic Research Project, University of The Ryukyus, Japan ⁶Faculty of Medicine, University of the Ryukyus, Japan

ABSTRACT: Indonesian marine waters have lots of resources, especially rocky fishes including ornamental fishes. However, the utilization levels of these resources are difficult to be assessed due to the limitation of technology and budget. The new technology called Environmental Deoxyribo Nucleic Acid (eDNA) approaches is a promising one that is expected to overcome those issues because of their efficiency in getting results and cost effectiveness. Here, we report the results of our preliminary researches on deep sea eDNA. We collected from 10 stations ranging in 110-200m depths from two areas in North Sulawesi where many coelacanths have been discovered by the Green Eye Project on ecological and distribution studies of Indonesian coelacanths, using Nansen bottle water sampler (1500cc). The collected waters were filtered using Power Water Sterivex DNA Isolation Kits and preserved with the DNAiso Reagent, then were transported to Center for Strategy Research Project, University of the Ryukyus, Okinawa, Japan, where eDNA analyses were conducted. Our preliminary results revealed that the concentrations of eDNA are good, indicating eDNA was successfully extracted. Furthermore, 40 species were detection by using a high through put Illumina MiSeq platform for sequencing analyses, even though we couldn't have detected any coelacanth information.

Key words: deep-sea, environmental DNA, and nansen water sampler

INTRODUCTION

Indonesia as a country has contains of the highest marine biodiversity on the planet laid between 6^0 E to 10^0 S and from 95^0 E to 142^0 E comprises about 18.110 islands with coastlines of about 108.920 km. About 78 % of the Indonesia waters cover territory with shallow seas in the western and eastern parts, the Sunda and Sahul plates separated by the deep Banda Sea is part and center of the Coral Triangle of the earth, which covers only about 2 percent of the global ocean but comprises 76 percent of all known coral species. Although some of the donator from all of the world are giving attention to protect the region's critical biological diversity and marine-dependent livelihoods (Anonymous 2004).

Indonesia has a strategic role as a world maritime shaft in the global supply chain system to connect the Asia-Pacific area with Australia, since it is located between the Asian Continent and the Australia Continent, and also between the Pacific Ocean and the Indian Ocean. With those potentials, God blesses Indonesia with immense marine resources including the biggest marine biodiversity, to control those marine resources abundance; the lots of the budget and times are needed.

A new technology approach can be overcoming of this problem were available can be implemented at around Indonesian marine waters by using the environmental DNA approach. Environmental DNA (eDNA) in aquatic environments refers to genetic material found in the water column. In the case of multicellular organisms, eDNA originates from various sources, such as metabolic waste, damaged tissue or sloughed skin cells (Kelly et al., 2014) (Ficetolla et al., 2008) Ficetola *et al.*^[2] was the first study demonstrating the use of eDNA for detecting an aquatic vertebrate species (invasive American bullfrog) from controlled environments and natural wetland, published in 2008. However, this technology is still rare implementation at marine water especially for deep-sea water.

Fig. 1. Map of collection sites of Deep-sea water sampler collected from two areas at Lolak Waters and Manado Bay North of Sulawesi, Indonesia.

Here we would like to predict the coelacanth (*Latimeria menadoensis*) and the others marine fisheries resources existence around the discovered coelacanth sites since years 2006-2015, and also is a potential fishing location by traditional fishermen of the both areas explained above by using the new and sophisticated technology of eDNA. If can be implementation of this technology around Indonesian marine waters, then the research activities of the marine biodiversity abundance will become more efficient and effective in relationship with the budget and times.

METHODOLOGY

Deep-sea water sampling was collected from 10 sites ranging from 110m-200m in depth (table 1.) at front side of the International Coelacanth Research Center and Museum Base at Lolak Waters and Manado Bay North of Sulawesi using Nansen Bottle Sampler (1500 cc) as shown in Fig. 2. The positions were follows the discovered of coelacanth by Green Eye Project on 2007-2015, (Masamitsu I. *et al.*)

The collected waters were filtered using Power Water Sterivex DNA Isolation Kits (Fig.2) and preserved with the DNAiso Reagent and kept in a deep freezer -25° C at Faculty of Fisheries and Marine Science, Sam Ratulangi University, until they were transported to Center for Strategy Research Project, University of the Ryukyus, Okinawa, where eDNA analyses were conducted following MiFish protocol at (Miya M. *et al.*2018). Therefore, e-DNA extraction was conducted at Center for Strategy Research Project at University of the Ryukyus Okinawa Japan by using Power Water Sterivex DNA Isolation Kit Samples by followed its protocol as follow (Anonymous, 1993).

Fig. 2. Research activities in the field collections and at Laboratory of Ryukyu University.

We conducted electrophoresis for each part 1^{st} -PCR and 2^{nd} -PCR to amplify the

Intense Signal of MiFish eDNA by Using Universal Primers MiFish-U-F/R, then it was used

for MiSeq sequencing process. All the sequence was analyzed for sequence identity at taxonomic assignment processes.

RESULTS AND DISCUSSIONS

The results show us a good quality of DNA concentration of water samples after extraction. The eDNA water sampler was collected from those two areas, Manado Bay and Lolak waters, Sulawesi sea of Indonesia, were each collections site has five stations as shown in Table. 1. And we become more exiting cause the electrophoresis of each part 1st-PCR and 2nd-PCR amplification products show as the sign of the target sequence bp (Fig. 3). As positive control the river samples as exhibited intense signal of MiFish eDNA amplification and negative controls (DW) showed no clear bands. Suggestions that no contamination cleared and feasible to be continued to next of the genome work.

Some number of the species has been analyses at The Center the Strategic research Projects of University of the Ryukyus.

Table 1. Results of collections site, satellite positions, sea's depth and the number of fish's species was detected at Lolak Waters and Manado Bay North of Sulawesi.

Stations	Po	sitions	Sea's Depth	Species
	(De	egrees)	(Meter)	(Number)
	Latitude (N)	Longitude (E)		
1	0.9298	124.0351	115	8
2	0.9338	124.0066	150	6
3	0.9339	123.9961	196	14
4	0.9217	124.9889	170	2
5	0.9128	123.9869	110	11
6	1.4699	124.8199	95	3
7	1.4707	124.8179	120	2
8	1.4686	124.8153	135	8
9	1.4659	124.8112	120	6
10	1.4661	124.8156	90	4

As shown in table 1. were 10 sampled sites of two areas are indicated of column one, the second column is satellite positions at latitude of north and longitude of east in degrees, the third column is seas` depth were ranged from 95-196 meters measured by videos eco-sounder with its Global Positioning System (GPS) and the fifth column are the detected fish's species.

Fig. 3. The 1st-PCR and 2nd-PCR Shows Intense Signal of MiFish eDNA by Using Universal Primers MiFish-U-F/R.

Then finally it can be explained (Table. 2), from all 10 collection sites we found that, the number of fish species have been obtained for taxonomic assignment analysis and the results of species was detection by deposit analysis of eDNA water sampler, based on fish base database, GBIF, Mito fish, and NCBI as shown in Table 4. By using a high through put Illumina MiSeq platform for sequencing analyses, we detected eDNA from 40 fish's species fishes. Even though we couldn't get any information about coelacanth.

Table 2. The results of fishes' detection at Manado Bay and Lolak Waters, Sulawesi Sea of Indonesia by using eDNA

Number	Family	Species Scientific Name	Swimming Layers (M)	Locations
1	Hemiscyllidae	Chiloscyllium plagiosum	50	Lolak
2	Dasyatidae	Neotrygon kuhlii	170	Lolak
3	Anguillidae	Anguilla celebesensis	10	Sariouw,Manado
4		Anguilla japonica (%1)	10	Sariouw
				Sariouw, Lolak,
5		Anguilla marmorata	10	Manado
6	Engraulidae	Encrasicholina punctifer	35	Lolak,Manado
7	Chanidae	Chanos Chanos	50	Lolak
8	Sternoptychidae	Maurolicus sp.	400	Lolak, Manado
9	Myctophidae	Benthosema pterotum	500	Manado
10		Diaphus regain	500	Lolak
11		Myctophum orientale	400	Manado
12	Mugilidae	Chelon affinis	20	Lolak
13	0	Chelon macrolepis (※1)	10	Manado
14		Mugil cephalus	120	Manado
15	Serranidae	Odontanthias borbonius	300	Manado
16	Symphysanodontidae	Symphysanodon katayamai	183	Lolak, Manado
17	Menidae	Mene maculate	200	Manado
18	Carangidae	Caranx latus (%2)	140	Manado
19		Caranx sexfasciatus	146	Lolak, Manado
20		Decapterus akaadsi	170	Manado
21		Decapterus macarellus	200	Lolak
22		Decapterus macrosoma	214	Manado
23		Selar crumenophthalmus	170	Lolak
24	Mullidae	Upeneus subvittatus	100	Manado
25	Pomacanthidae	Apolemichthys trimaculatus	60	Manado
26		Pomacanthus imperator	100	Lolak
27		Oreochromis niloticus	5	Lolak
28		Kuhlia marginata	5	Lolak
29		Kali indica	500	Lolak
30		Oxyeleotris marmorata	10	Sariouw
31		Sicyopterus japonicus (%1)	5	Sariouw
32		Sicyopterus lagocephalus	5	Sariouw
33		Euthynnus alletteratus(%2)	150	Sariouw
34		Katsuwonus pelamis	260	Lolak
35		Rastrelliger kanagurta	90	Lolak, Manado
36		Thunnus albacares	250	Lolak, Manado
37		Thunnus maccoyii	500	Manado
38		Paramonacanthus japonicus	46	Lolak
39		Lagocephalus gloveri	450	Manado
40		Cyclichthys orbicularis	170	Manado

Table 4. Taxonomic assignment analysis and the results of species detection by Deposit analysis of eDNA water sampler from Manado Bay and Lolak Waters C01-01-Tanjung0mpu01-KP60-1 SLUniv processed

Phylogenetic tree of spe	Phylogenetic tree of species from the C01-01-TanjungOmpu01-KP60-1_S1,Univ_processed										
Species 和名	Total read # Fish	nbase BoL Gb	if MitoFish	NCBI Newle	k Repres	entati	ve sequ	ence			
Homo sapiens EI-	1483 Fist	base BoL Ma	p MitoFish	NCBI Tre	CACCG	CGGT	CACAC	GATTAACO	CAAGT	CAATAG	GAAGCCGGCGTAAAGAGT
Chelon macroleois_⊐#	🤊 7 Est	base Bol. Ma	p MitoFish	NCBI Tre	CACCG	CGGT	TATACO	GAGAGGT	CCAAG	TGACA	GCCATCGGCGTAAAGAG
Back to list											
C01-02-TanjungOmpu02-KP60-1_S2.Univ_processed											
Phylogenetic tree of spe	cies from the C01-02-1	FanjungOmpu02	-KP60-1 S	2,Univ proces	sed						
Species	和名 Tota	l read # Fishb	ase Bol (Gbif MitoFish	NCBI Ne	wick	Repres	sentative :	sequen	ce .	
Homo sapiens	LF 643	Fishb	ase BoL I	Map MitoFish	NCBI Tr	e	CACCO	GCGGTCA	CACGAT	TAACCO	AAGTCAATAGAAGCCGG
Mus musculus domestic	//5 ハツカネズミ 39	Fishb	ase Bol I	Map MitoFish	NCBI Tr	2	CACCO	GCGGTCA	FACGAT	TAACCO	AAACTAATTATCTTCGG
Back to list											
C01-03-Lolak	River-KP60-1	_S3.Univ	_proce	ssed							
Phylogenetic tree of spe	cies from the C01-03-	olakRiver-KP60	-1 S3.Univ	processed							
Canalan	10.0			Total and d	. Pickhans	Del	OLIS	And and the local sectors of	MONT	Alexidade	Received the second
Species	40.00			14225	 Hishback 	E DOL	Man	MitoField	NCD1	Trevitor	CACCECCCCCCCACACCA
Caraav covfacelature	CP			492	Fishbace	BOL Rol	Map	MitoFich	NCBI	Tre	CACCECCECTIATACEA
Thunnus albacanes	キンパイノン			116	Eichhard	Bol	Man	MitoEich	NCBI	Tre	CACCGCGGTTATACGA
Encrasicholina punctifor	44711774	12/12/2		59	Fichhase	Bol	Man	MitoFish	NCBI	Tre	CACCOCOUTTATACGA
Domaranthur important	タテジスもい。	Extra d		41	Eichhard	Rol	Man	MitoEich	NCBT	Tre	CACCECEGETTATACEA
Mus musculus domestic				31	Fichhace	Bol	Man	MitoFish	NCBI	Tre	CACCOCOGTICATACOA
Homo sanians neandert	haloopic ポチ・サビエン	/ス・ネアンデルイ		47	Fichhase	Bol	Man	MitoFish	NCBI	Tre	CACCECEGETCACACEA
Pan naniscus	ピグヌーチンパ	Sec.		22	Fishbase	Bol	Man	MitoFish	NCBI	Tre	CACCECEGETCACACEA
Pan troplodytes troplod	des ピグヨーチン/	シジーと同じ属	名の種	24	Fishbase	Bol	Man	MitoEish	NCBI	Tre	ACCGCGGTCACACGAT
Chiloscyllium plaajosum	シロボシテン	27		2	Fishbase	Bol	Map	MitoFish	NCBI	Tre	CACCGCGGTTATACGA
Back to list							_			_	
C01-04-Molos	ingIsid01-KP	60-1_S4.	Univ_p	rocesse	d						
Phylogenetic tree of spe	cles from the C01-04-P	4olosinaIsld01-l	KP60-1 54.	Univ processe	d						
Charles	to 42	Total read #	Fichhaca	Bol Ghif M	itoEich M	BT N	anite	Depreser	tativa e	enuenn	
Homo saniaos	th.	910	Fichhaso	Bol Man M	itoFish NO	BIT	TD I	CACCGC	GTCA	ACGAT	AACCCAAGTCAATAGAA
Encrasicholina nunctifer	タイワンアイノコイワシ	200	Fishhase	Bol Man M	itoFish NO	BIT	te.	CACCECC	GTTAT	ACGAG	GACCCTAGTIGATCICA
Neatryana kuhli	該当和名・国名なし	18	Fishhase	Bol Map M	itoEish NO	BIT	re	CACCGC	GTTAT	ACGAG	GACACAAATTAATATTC
Caranx sexfasciatus	ギンガメアジ	3	Fishbase	Bol. Map M	itoFish NO	BI T	re	CACCGC	GTTAT	ACGAG	AGGCTCAAGTTGACAGAC
						-	_				

Furthermore, this bioinformatics data was compared to the fish's distributions and ecological as reported from the Green Eye project 2007-2015 (Masamitsu I. *et al.*) where the site also known as fishing grounds of those target fishes. Here we can have explained that, the results of collections sites, satellite positions, sea's depth and the number of fish's species was detected at Lolak Waters and Manado Bay North of Sulawesi, explained that the collection site at Lolak Waters relatively higher fisheries resources existence abundance.

Fig.4. The relationships between the collection sites number and sea's depth as shown at Fig. 4-a by radar chart and Collections Sites Seas' Depth with balloons pattern analyses (4-b)

As shown at Fig. 4. The relationships between the collection sites number and sea's depth by radar chart approach and the number of the fishes' species detected was analyzed and perform by using the balloons pattern for easer to understand.

Fig. 5. Relationships between Detected Fishes`Species and Swimming layers of each.

More interesting 40 fishes' species were detected by environmental DNA tools in this study. We found that 8 species are the deep-sea fishes' species or 20 % from the total species detections as shown in Fig. 5. According to the former researches results have been done by Green eye Project team in collaborating among Aquamarine Fukushima, Sam Ratulangi University and Indonesian Institution of Science Republic of Indonesia under umbrella of International Coelacanth Research Center and Marine Museum Indonesia by using the sophisticated equipment of remotely operating vehicles (ROV) during periods surveyed 2006-2016 depths, ranged of 150-225 in meters were encountered swimming layers of the

coelacanth (*Latimeria menadoensis*) around Indonesia seas.

The mostly species were detection are the shallower swimming layers, coral fishes and pelagic species (Fig.6). Only about 7 deep-sea fish species were detected from eDNA water sampler, caused by some reasons the water samples were pickup by Nansen water sampler just limited to the seas` depth ranges around 200 meters.

Fig. 6. Relationships between the Sample Sites, Fishes` Swimming Layers and the number of the detected aquatic creatures by spider chart pattern.

Fig. 7. The relationships between the collections and Fishes` Species Swimming Layers.

Furthermore, we comparing among whole DNA data samples, Lolak sea and Manado Bay in Fig. 7, explained that the percentage of the fish's species were detected by the environmental DNA tools and perform by the lunar eclipse pattern. From this figure show that the mostly the fishes were detected are living at shallower swimming layers. About 90 % of the 40 fish's species are living at shallower sea waters or less than 300 meters in depth and around 10 % of the fish's species are living at deep-sea or more than 300 meters in depth. In Fig. 7-b the fish's species were detected at Lolak waters, in this figure show that only 8 % of the fish's species were detected are at swimming layers categorized of deep-sea and the others of them are more than 90 % are living at shallower and at coral And Fig. 7-c is at reefs. Manado Bay with 12 % at deep-sea were detected and clear based on the PCR results. During our surveyed at the fields by pick up the deep-sea waters at two areas consisted by 10 stations around the discovery of coelacanth and also became the fishing grounds by local fisherman from long years ago, unfortunately we have not yet got any DNA of the coelacanth due to this organism are vey rare in the sea, or because they living in the sea bed cave.

CONCLUSSIONS AND REMARKS

Based on our results analysis to developed universal primer MiFish in a metabarcoding approach to fish eDNA we confirmed that the Lolak Waters are having relatively higher the fisheries resources existence abundance comparing of that on Manado bay. In implementation of the deep-sea environmental DNA research, the un-contamination aspect during fields work is absolutely necessary, therefore for effectiveness and efficiencies research of the marine fisheries resource's existence abundance point of view, the environmental DNA technology approach is suitable to be applied. Finally, this marine environmental DNA technology could be get fruitful in the near future if it could be implemented to Indonesian marine and freshwater due to Indonesia country have very wider territorial in the view of point forecasting the fisheries resources existence abundance.

ACKNOWLEDGEMENT

We would like to thank first to Japanese Government through the Ministry of Education, Culture, Sports, Science and Technology (MEXT) which gave opportunity to us for doing this project due to the very rare moment, to the Dean of Faculty of Fisheries and Marine Science, Sam Ratulangi University, who giving support to the team during surveyed and gave us the letter of the material transferred agreement (MTA) of deep-sea water samples and brought to Japan. Then to the Tropical Biosphere Research Center and The Center for Strategic Research Project University of the Ryukyus which have been funding and very eager to support this project and allowed us to conducted the eDNA laboratory works. View, the environmental DNA technology approach is suitable to be applied. Finally, this marine environmental DNA technology could be get fruitful in the near future if it could be implemented to Indonesian marine and freshwater due to Indonesia country have very wider territorial in the view of point forecasting the fisheries resources existence abundance.

REFERENCES

ANONIMOUS. 1993 DNA Isolation Kit Sample (For isolation of genomic DNA from Sterivex TM filter units, Millipore catalog# SVGPL10RC), (Catalog No. 14600-S) USA

- FICETOLA GF., MIAUD C., POMPANON F., TABERLET P. 2008 Species detection using environmental DNA from water samples. *Biol. Lett.* 4, 423–425. (doi:10.1098/ rsbl.2008.0118)
- MASAMITSU I., et. al., 2016 Biological Study of the Indonesia Coelacanth.
- KELLY RP., PORT JA., YAMAHARA KM.,

MARTONE RG., LOWELL N., THOMSEN PF., MACH ME., BENNET M., PRAHLER E., CALDWELL MR. 2014 Harnessing DNA to improve environmental management. *Science* **344**, 1455–1456. (doi:10.1126/science. 1251156) *Fish Research.* **83**: 115-123

MIYA M *et al.* 2015 MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. *R. Soc. open sci.* **2**: 150088.http://dx.doi.org/10.1098/rsos.150088