Breeding King Crab, Chaceon granulatus, for the Sustainable Deep-sea Animal

°Koji Ishigaki¹, Jumpei Yabuki¹, Yura Tsubouchi¹, Taiyo Ishigaki¹, Hiroshi Miyake², Satomi Komori², Tomoyoshi Sanada², Ayako Oda² 1.Blue Corner Inc. 2.Kitasato University

Recently, deep-sea animals for the ornamental purpose in public aquariums have been getting popular. It has been much more concerned about over-fishing by deep-sea trawl fishing and replacement of deep-sea animal exhibit with higher mortality. Therefore we should consider the sustainable deep-sea animal exhibit in public aquariums with conservation of deep-sea ecosystem in the future. We have been trying for breeding deep-sea crustaceans because of not only ornamental market, but also high demand for consumption market.

A deep-sea trawl fisherman offered one Japanese golden crab, *Chaceon granulatus* bearing enough number of fertilized eggs caught by trap fishing at 300 m depth in Suruga Bay. The eggs were cultured at different water temperatures, 9 °C and 12 °C until zoea period between Blue Corner Inc. and Kitasato University. Zoea was hatched in captivity on 47th day from the start of the keeping and it took 55 days from zoea to young crab by at least 7 times molting. It had survived in captivity for 22 days.

It has been found through this experiment as follows. The appropriate water temperature is 20-22 °C until the young crab period. It might be better to set water temperature for 18-20 °C after the young crab period. Good food for megalopa-young period is krill, *Euphausia superba*. Need to set up the scaffolding for megalopa to be molt successfully.